
Continued on Page 24

game developer | September 2009 22

Our core team was made up of the usual suspects—
promising aspirants and industry veterans from Origin,
Midway, and beyond. Josef Hall (senior director of software
engineering), Todd Coleman (creative director), and I were
founders of Wolfpack Studios, and still proudly wear the
scars from Shadowbane.

At the time of writing this article, we’re almost one
year after launch and the response has been phenomenal.
A fun game with interesting differences to what’s currently
available has made for a compelling combo, but it’s still
gratifying to hear from parents and kids who love the
game and educational to hear from those who don’t. I’ve
personally learned a lot from this project, and I’m pleased
to have the opportunity to share some of that.

W h a t w e n t r i g h t

1) Right idea at the right time. At the time we
started the project, Disney’s ToonTown was the only

massively multiplayer online game on the market that

catered to the kids’ demographic. Our goal was to address
this audience with a product that had more depth.

The market was ripe for a new game, and Todd
Coleman’s idea of wizardry and CCGs based in a fantasy
world was a wonderful framework for a game. Josef Hall,
proud parent, made the connection that the kids’ and
tween market was wide open.

It’s always fun to work on an original IP, and we honed
the vision through countless brainstorming sessions.
The decision was also made to make the game very story
driven, with an emphasis on the player being the central
character and hero in an epic magical adventure.

Players enter the game as new students recruited
by the headmaster to combat a deadly magical threat
to all of creation. The idea quickly grew beyond the
scope of a school for wizards, and encompasses many
different magical worlds. The concept of our different
schools of magic mapped perfectly onto types of cards
for the CCG.

www.gdmag.com 23

We tried to keep the story simple and easy
to understand by incorporating a fun cast of
characters with an old-school hero’s journey. We
also wanted to make a game that would appeal to
families; Pixar’s ability to appeal to parents and
kids alike with movies like Cars, Toy Story, and
The Incredibles was our shining example.

2) Scope, scope, scope. We had a team of
fewer than fifty developers at our peak,

and an aggressive schedule. We wanted to
deliver a top-quality game in under three years.
The veterans among us were skeptical, but
determined. The only way it worked was to keep
the game design tightly scoped; we knew feature
creep would kill the project.

We had some leeway in that our target market
was fairly free of competitors, so we were able to
initially cut features that, in another market, we
wouldn’t be able to ship without. Anything that
wasn’t deemed critical to the core game experience
was deferred or cut. Guilds, crafting, mounts,
player housing, auction houses, grouping, player-
versus-player combat—all these things could wait
until after launch. We’ve added most of them in the
year since the game opened, but we never would
have shipped on schedule if we’d tried to do it all.

Our internal milestones were built around core
features taken from the overall game design. We’d
identify one or two major features to finish and
polish, estimate them, and let those estimates
determine the milestone duration. Then we’d fill out
the milestone task list with smaller features as time

and resources allowed. Repeating this process in
bursts of roughly eight to twelve weeks allowed us
to focus on a few features at a time. We drew only
from the master design, which kept the scope of the
game from growing too much over time.

We didn’t launch with as much content as
we’d have liked, but you never do. We elected to
ship with four major adventure areas and quickly
added a fifth area three months after launch.
This was a small enough amount of content to
allow us to manage the work, but still enough to
provide several hundred hours of game play. We
recognize that content is vital in MMOs, but you
still have to launch the game!

3) Prototype and Iterative Design. The
idea of a turn-based MMO collectible card

game for kids was a bit risky, to say the least. We
knew that the card game combat was our core
unit of gameplay, so we had to get it right.

Our initial prototype of the combat system
consisted of hand-drawn cards (art courtesy of
game visionary Todd Coleman), some ten-sided
dice, and colored glass beads (for power points
and health). We spent hours playing the game
against each other (there were no monsters
initially), changing card values as we went with a
quick erase and pencil scratch iterative approach.

The second prototype was on the computer,
with a client and independent server—a
multiplayer version with 2D cards and data
stored in tables for easy iterations and balancing.
Limited A.I. for computer controlled opponents

came later, and served as the basis for our full
monster A.I. system.

The critical part of this early work was to see
if the basic core gameplay was fun, and to refine
the combat rules. Those rules evolved into our
current combat resolver. Prototyping was critical
to our later success; locking down core gameplay
early allowed us to focus on other elements of the
game instead of going through multiple project
restarts we couldn’t afford.

This iterative approach to development was
applied to all new systems, though not to the same
degree. Each time a new system was brought
online, we’d get it functional as quickly as possible
and try it out. Feedback was gathered from anyone
and everyone in the company, and incorporated.

As the game’s development progressed,
we also took the opportunity to focus test.
Art direction, pricing model, story elements,
characters, combat—almost everything was put
in front of kids and parents at some point during
production. We listened to the customer, and
reaped the benefits.

4) Digital Download and Free Trial.
There was great debate about whether to

go retail or direct download, adopt a free-to-play
model or give the standard free 30 days. Those
of us with shipped MMO game experience were
more comfortable with a traditional approach, but
our company founder Elie Akillian maintained that
digital download was the best way to get our game
into the hands of the casual masses. He was right.

game developer | September 200924

Publisher KingsIsle

DEVELOPER KingsIsle

Number of Full-Time
Developers Approximately 40
at peak

Number of Contractors
Roughly 30 including QA

Length of Development
Six months pre-production, 36 months
of full development

Release Date September 2, 2008

SOFTWARE Microsoft Developer's
Studio, G++, 3D Studio MAX, Adobe
Photoshop

Technology Gamebryo, Miles, Open
Dynamics Engine

Platform PC/Online

game data

Continued FROM Page 22

As a new, independent studio, we didn’t have
the pull of a big studio that is able to demand
shelf space and end caps. Our game was fun, but
no one had heard of us. The obvious answer was
to let the game sell itself, and the best way to do
that was to let people try it for free.

Going with direct download had many
challenges, however. Even now, we’re constantly
concerned with download size, since it’s a major
barrier to getting into the game. Each game
update is scrutinized and pared down so that we
aren’t increasing the download to a new user.

One of our better features is our ability to
stream the game to the user. This was a huge
technical win for us, and basically means that
we can deliver game content to the player just
before they need it. We have a small initial
download that allows the player to create a
new character. While character creation is
taking place, the game is downloading the
tutorial—while the player is in the tutorial, we
are downloading the starting area. Although
most players will never notice, it means they
don’t have to incur a giant download to start
playing the game.

Finally, our server architecture needed to be
scalable and robust. A free-to-play or free trial
game with millions of players coming through
needs to be able to handle the load without
turning away potential players!

Digital download is a hard road, but
considering the millions of players who have
given Wizard101 a try, it was the right choice.

5) Min Spec and Smart Tech. Who still has
a GeForce2 in their rig? Who actually uses

the integrated video chipset that comes with the
motherboard? Who still has less than a gig of
RAM? Millions and millions of casual users and
kids on hand-me-down machines, that’s who.

We did exhaustive research early in the
project to try and determine what min spec would
allow our target market to play the game, and it
was pretty scary. Our research indicated a much
higher min spec than what we chose, because all
data at the time came from gamers, who typically
have much more powerful machines than casual
users. We took a gamble and went with a much
lower min spec, and it really paid off.

We set a tight budget on polygons and texture
sizes for every piece of art in the game, and created
our areas to support a fixed number of players so
that we could limit the load on the graphics card.
Clever use of portalling and other tricks in world
building allowed us to hide high-polygon pieces of
art, and restrict how many concurrent combats a
player could see on screen (another big poly hit).

The programming team was very careful
about how much data is kept in memory, and
spent a lot of time optimizing the code to use

minimal RAM and processing power. Additionally,
whenever driver problems arose during
compatibility testing we wrote code workarounds
so that our casual users would not be faced
with the daunting prospect of having to update
drivers to play the game. We also knew most
casual users and kids would be on older operating
systems with outdated service packs and drivers,
so we went out of our way to support all that.

Finally, we made the decision to go with
a very stylized look to the game. The art style
is funny, approachable, and
casual, but more importantly,
the game looks good on low
end machines and will age well,
since we aren’t competing in the
realm of hyper-realistic, bleeding
edge graphics.

W h a t w e n t w r o n g

1) Modular World Building.
With a small team and

aggressive schedule, we made a
decision early on that we should take
a very modular approach to world and
level creation. The idea was that if you
use generic building blocks and let the
level builders snap them together, you
can get a lot of re-use and will be able to
create more content for less art time. It

www.gdmag.com 25

didn’t really work—custom areas are better and
take just about as much time to create.

We came up with a list of “snappable” pieces
(L-shape, T-intersection, end caps, boss rooms,
etc.) and had the artists create them for each
world with texture variations and decorate them
with props appropriate to the different areas. The
world designers knew the size of each piece and
would create vast adventure area maps on grid
paper while the art was being created. In this way,
we hoped the designers and artists would be able
to work concurrently on the tasks. After the art
was created, the designers would snap the pieces
together, export them, and the artists would go
back for a decoration, polish, and lighting
pass. Even though the individual pieces of
art were excellent, the end result was
fairly generic levels that all looked the
same and were boring. The more
we re-used pieces, the worse the
problem became.

The solution seemed
obvious—we would create
custom pieces that we could
drop in among the generic
pieces to provide points of reference to the
player in the area and break things up. Examples
were gardens with statues, hedge mazes, camps
with pavilions, and the like. That really didn’t
work that well either. Even though the custom
pieces looked great, we weren’t able to create
enough of them to make a difference.

Another approach we tried was to make
adjacent areas appear very different by changing
the decoration and textures between areas. For
example, on Wizard City (our starting world) we
themed the adventures areas by element (nature,

fire, ice, etc.) and added icicles, snow, pools of lava,
and burning trees to the different zones. That helped
some, but it served to hide the problem rather than
solve it. The areas still felt very much the same.

For our latest world, Grizzleheim, we finally
made it work. We took a totally custom approach to
level building; each area was individually concepted
and designed, then hand crafted by an artist. The
result was a much-improved visual appeal, and all
the areas combined took about as long to make as
it takes to create a set of snappable pieces.

2) We Changed the Business Model
Close to Launch. Naturally, getting

people to give us money for the game was
key to our longevity and success as

a company, and so the business
model was a hotly debated topic

during early production. We
finally settled on a subscription
model that was family-friendly

and had a good price point.
Fairly close to launch, however,

we re-opened the subject for
discussion and decided to

take a more hybrid approach—we’d allow for both
subscribers and micropayment customers. At
the same time, we also decided to allow users to
play the first part of the game for free. By adding
a free trial, we increased the number of players
the architecture had to support by an order of
magnitude. It’s a testament to the scalability of
what our engineers built that it was even possible
that late in development.

We’ve seen promising results from catering to
users that want to pay us in different ways, but
because we chose to offer micropayments fairly

late in the development cycle our implementation
was less than ideal. For example, rather than
having a micro-payment shop available to the
users at the touch of a button, we had to use
an automated in-game character as our micro-
payment shopkeeper. Players have to find him
in-game to be able to make micro-transactions.
Additionally, the types and variety of items
available for micropayments are limited and not
altogether compelling.

Another challenge to using the hybrid approach
has been the fine line we have to walk with our
users; we want to entice our subscribers to make
microtransactions, but we don’t want to make
them feel like they are getting less value for
their monthly payments or being forced to use
microtransactions. The approach we’ve taken is
that for every item available in the game for a
micropayment, that item is also available in the
game by other means—for gold, as a rare monster
drop, or as a PvP reward. By doing this we have an
answer to our subscribers’ concerns about value,
but it makes for a lot more data work, is error-
prone, and can create game balance issues.

If we had the chance to do it all over again, we
would pursue a hybrid business model earlier in
development. That way we could have created a
much smoother experience and more compelling
micro-transaction offerings to the users.

3) User Interface Mistakes. To be frank,
our graphic user interface is kind of a

mess. The GUI is in many ways the face of the
game, and supposed to be the user’s best friend.
It’s one of the pieces of the game that speaks
to the overall quality of the product, and ours
isn’t great.

We failed, at the start, to come up with our
user interface language—a bible of rules that
should make your GUI elegant and intuitive, if
followed. As a result, our GUI is often clunky,
crowded, and inconsistent. Sometimes buttons
are round with icons; sometimes they are square
with words. Sometimes we navigate menus with
side tabs; other times it’s with circular icons at the
top of the page. It is critical that you think through
how your players will use the interface, and iterate
and polish it until it shines—we didn’t do that.
Although some of our HUDs (deck configuration,
for example) did go through dozens of revisions,
without a set of established guidelines the result
was inconsistent and unpolished.

On the technical side, for reasons beyond
our control, we were forced to make the
decision to build our own graphical interface
system and have struggled with it ever since.
We used a homegrown tool for interface layout
that was difficult to use and hard to learn.
This means that designers and artists had
trouble making (and fixing) the GUI, so it fell to
programmers to implement HUDs and fix bugs.
As a result, programmers spent more time than
they should have fixing interface issues, and

game developer | September 200926

our screens lack the visual polish an artist
would have provided.

Additionally, our interface elements don’t scale
and resize with the game’s screen resolution.
We support 800x600 at the low end, so you can
imagine that the HUDs become so small they are
almost unusable at high resolutions.

Lastly, our user interface screens are all
static; we don’t have the capability to animate
them, so they seem to lack polish compared to
other games made with Flash-based GUIs.

We’re currently in the process of migrating
our system and all interface elements to Flash,
and will soon share the level of quality many of
our competitors display.

4) Stats and Metrics Problems. The
collection, representation and mining of

data related to player activities can provide the
developer with the keys to tweaking their product
to perfection. The trick is to collect enough of the
right data, and to make that data accessible to the
right audience. If you fail in any of these respects
you’re in for some headaches. We have headaches.

We weren’t sure which facts were going to
be important in understanding the success of
our game and how we’d need to slice and dice
those facts in order to make decisions. We also
could have done a better job of making sure the
metrics supported the different groups within our
company. For example, marketing and operations
may both be interested in unique logins, but may
require different dimensions—demographically
by week for marketing, peak activity hours for
operations. We still struggle with asking the right
questions and getting the right answers to the
people who need them.

Our plan for growth underestimated the
amount of data we would need to gather and the
number of reports we’d need to run. The activities
of millions of players add up quickly. We had
some issues scaling our data warehouse with the
increasing data set, and had to scramble to keep
up. Beyond larger and faster disks, we needed
a reporting, retention, and aggregation strategy
that would keep our data warehouse manageable
after a year of data and billions of facts.

It’s not that we weren’t warned—our
unfortunate data expert told us we needed to
make smart choices, but in the heat of making a
fun game, we didn’t listen. A year after launch, we
have a mountain of data, and are having to work
very hard to able to parse through it all to see
valuable trends and statistics.

5) Poor Player Growth Strategy. This
was a rookie mistake, and we should have

known better. MMOs grow over time, and have
a lifespan of five to ten years. A smart designer
would plan for plenty of room to grow the game
and grow the characters along with it. We, however,
chose to box ourselves in and make it difficult.

The first basic problem is that we chose to
use a percent scale for many of our equipment
and advancement modifiers. Accuracy, damage
increase, damage resistance, and other attributes
lie along on a scale of 1–100 percent (some with
caps lower than 100 percent). This means that we
have a hard ceiling on how much power we can
award the player through the course of the game.

Here’s an example: players use power points
(pips) to cast spells in combat, and more powerful
spells require more pips. Players gain a pip at the
beginning of each turn in combat. As players earn
power and equipment, they gain the chance to
get a double pip. Here’s the sad part—the double
pip chance is on a scale of 1–100 percent, and we
launched the game with players able to achieve
near 90 percent. Given that 100 percent is the max,
we have very little room to make more powerful
equipment or grow the player beyond what they
could achieve when we launched. Additionally the
equipment upgrades we designed ended up not
being very compelling. With only 100 points to
grant, we have upgrades that go from 2 percent
Fire Resistance to 3 percent—not very exciting.

The second problem is that we didn’t give
characters very many attributes. We thought
that because we were making a collectible
card game, we wanted the majority of player

power to come from
collecting cards
and building decks.
However, when you only
have a few attributes
on the character, you
don’t have many ways
to create valuable

equipment, so your loot and advancement
options become very limited.

The last major problem related to player
advancement was that we didn’t launch the game
with any true boss fights. Really, the only way we
had to make fights more difficult was to increase
the health of the monsters, which just resulted
in longer fights. Additionally, we added some
scripted boss fights after launch, and there was a
huge backlash from our player community.

Now that we’re well past launch and it’s
quickly becoming time to increase the power
scale, we’re faced with some difficult challenges.
The prospect of building and testing a new
equipment and character development scheme is
daunting, not to mention re-balancing thousands
of pieces of gear. The anticipated community
response alone is enough to make me cringe.

C l a ss D i s m i ss e d
» Some game projects are sprints, some are
marathons. An MMO game project feel like sprinting
a marathon. We learned just how much you can
accomplish with a small, talented team. We learned
there is no substitute for good planning, and that
polish happens all the time, not just at the end.

The best thing about an MMO is that it doesn’t
go away after launch, so we can correct some
of the mistakes we’ve made along the way and
apply what we’ve learned in making the pre-
launch product to the live product.

By anyone’s standards, Wizard101 is a
phenomenal success, and it’s absolutely the best
project I’ve ever worked on. There are a few things
I’d do differently, and some good lessons learned,
but overall it was an immense pleasure to work
on such a great game.

James Nance is the senior producer for Wizard101. His

career started in 1991 when Nance joined Origin Systems

as a QA tester. He was the lead designer on Shadowbane

and an executive producer at Wolfpack Studios prior to

joining KingsIsle. Email him at jnance@gdmag.com.

www.gdmag.com 27

Ph
ot

o
 b

y
To

m
 H

al
l

Wizards101 principles Josef Hall, J. Todd Coleman, James Nance, and Diego.

